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Abstract.—The Scarlet Ibis (Eudocimus ruber) and White Ibis (Eudocimus albus) are often classified as separate 
species, but differing scientific opinions exist regarding the taxonomic status of these birds, as they exhibit similar 
behavior and hybridize in nature. The present study provides genetic data to help clarify this taxonomic issue. DNA 
was extracted from 10 individuals of each taxon from the states of Florida, USA (White Ibis) and Amapá, Brazil 
(Scarlet Ibis). The sequences of three mitochondrial and four nuclear markers were obtained from all individuals. 
The Scarlet Ibis and White Ibis did not share any haplotypes in mitochondrial genes nor in one nuclear marker. 
Species delimitation using Bayesian analysis, the Knowles-Carstens method and the genealogical sorting index 
demonstrated the Scarlet Ibis and White Ibis to be two different lineages and revealed a strong signal of speciation 
despite the polyphyly found in three of the four nuclear markers. Received 3 April 2014, accepted 31 July 2014.
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The genus Eudocimus includes two spe-
cies: the Scarlet Ibis (Eudocimus ruber) is typi-
cally found in South America and has scarlet 
plumage (Sick 1997), while the White Ibis 
(E. albus) has white plumage and occurs in 
southeastern North America, throughout 
Central America and in northern South 
America (Heath et al. 2009). Their distribu-
tion overlaps in the Los Llanos region of 
Venezuela and Colombia, where they hy-
bridize. However, the majority of pairings in 
the parapatric zone are between individuals 
of the same morphotype (Ramo and Busto 
1987).

Ridgway (1884) considered Scarlet and 
White ibises to be a single species, but sub-
sequent interpretations suggest two separate 
species. Many researchers consider these 
birds to be different species (American 
Ornithologists’ Union 1998; Remsen et al. 
2014). Ramo and Busto (1987) proposed 
that the White Ibis is a subspecies of Scarlet 
Ibis based on lack of reproductive isolation 
and the biological species concept. Hancock 
et al. (1992) reported a difference in bill 

coloration during breeding between Scarlet 
and White ibises. While there appears to be 
no differences in breeding behavior or eco-
logical niches, van Wierengen and Brouwer 
(1990) noted consistent differences in size 
between the White Ibis of North America 
and both White and Scarlet ibises of South 
America. In addition, Hancock et al. (1992) 
and Kushlan and Bildstein (1992) proposed 
E. albus to be the North American species 
and E. ruber to be the South American spe-
cies, the latter including both the numeri-
cally dominant red form and a relatively rare 
white form. In contrast, Patten (2012) con-
siders the white form from South America 
to be a subspecies of the White Ibis (E. albus 
ramobustorum), following the current treat-
ment as two different species.

Species delimitation has been pro-
posed through the use of genetic methods 
(Carstens et al. 2013). However, even if the 
speciation process were immediate, the gen-
eration of reciprocal monophyly at multiple 
loci requires a substantial amount of time 
after the initial divergence. Species delimita-
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tion methods use both mitochondrial DNA 
(mtDNA) and multiple nuclear loci to ob-
tain a signal of speciation, despite the fact 
that markers are not monophyletic (Knowles 
and Carstens 2007).

Morphological, ecological and behav-
ioral data have served as the basis for previ-
ous classifications of Scarlet and White ibises 
as two separate species. The present study 
provides mitochondrial and nuclear genetic 
data to contribute to discussions on this is-
sue. We applied recently developed species 
delimitation methods to evaluate the taxo-
nomic status of Scarlet and White ibises.

methods

Samples

Blood samples from Scarlet Ibises (n = 10) were col-
lected in the state of Amapá, Brazil (Zelândia Farm (n 
= 6): 01° 09′ N, 50° 23′ W; Se Cria Farm (n = 4): 01° 
56′ N, 50° 35′ W) and liver samples from White Ibises 
(n = 10) in the state of Florida, USA (Alley North: 26° 
12′ N, 80° 31′ W). Buff-necked Ibis (Theristicus caudatus) 
was used as an outgroup. We incubated samples in Tris-
EDTA buffer containing proteinase K 20 mg/µL (and 
1% Sodium Dodecyl Sulfate for liver samples). We em-
ployed the phenol-chloroform method to isolate DNA 
(Sambrook et al. 1989).

Amplification and Sequencing

We amplified three mitochondrial and four nuclear 
loci. Table 1 displays the experimental conditions and 
primers. We performed sequencing reactions using the 
BigDye Terminator Cycle Sequencing kit (Applied Bio-
systems). We performed automatic sequencing in an 
ABI3730 Genetic Analyzer (Applied Biosystems). We se-
quenced 16S rRNA (16S, 591 bp), cytochrome B (CytB, 
1017 bp), cytochrome oxidase I (COI, 699 bp), intron 7 of 
β-fibrinogen (FIB, 749 bp), intron 11 of glyceraldehyde-
3-phosphate dehydrogenase (GADPH, 404 bp), intron 4 
of the myelin proteolipid protein (MPP, 240 bp) and in-
tron 2 of myoglobin (MB, 657 bp) from all individuals.

Data Analyses

We edited sequences using BioEdit (Hall 1999). 
We deposited all sequences in the GenBank (acces-
sion numbers: JF521857-JF521997). We used ClustalX 
to perform the global alignment (Larkin et al. 2007). 
We phased haplotypes for heterozygous nuclear se-
quences using Phase (Stephens et al. 2001) implement-
ed in DnaSP (Librado and Rozas 2009). We estimated 
the minimum number of recombination events within 
each nuclear locus using DnaSP and computed Kimura 
2-parmeter (K2P) distances using MEGA (Tamura et al. 
2013).

We performed several approaches for species de-
limitation using multilocus data. Bayesian analysis of 
species delimitation was performed using Bayesian Phy-
logenetics and Phylogeography BPP (Yang and Rannala 
2010). We analyzed mitochondrial and nuclear data 
separately. We ran 100,000 generations of reversible-
jump Markov chain Monte Carlo with a sampling fre-
quency of five and a burn-in of 50,000. We used algo-
rithm 0 with the fine-tuning parameter ε = 5.0 (Yang 
and Rannala 2010). The a priori distributions of the 
ancestral population size (θ) and root age (τ0) were (2, 
1000) and (2, 2000), respectively, following Yang and 
Rannala (2010). This analysis allowed us to estimate the 
posterior probability of each bifurcation in the guide 
tree (speciation probability). A speciation probability of 
≥ 0.95 indicates strong support for a speciation event 
(Yang and Rannala 2010).

We evaluated the level of genealogical divergence 
between the Scarlet and White ibises using the genea-
logical sorting index (gsi; Cummings et al. 2008) based 
on nuclear data (with no evidence of recombination), 
and mitochondrial gene trees obtained using Bayesian 
inference in BEAST (Drummond and Rambaut 2007). 
The statistic gsi ranges from 1 (monophyly) to 0 (com-
plete lack of genealogical divergence). We calculated 
gsi for 100 trees and obtained an ensemble gsi statistic 
(gsiT) as a measure of genealogical divergence. We as-
sessed the significance of the statistic using 1,000 per-
mutations.

We used the approach described by Knowles and 
Carstens (2007) for lineage delimitations. For each lo-
cus, we constructed a likelihood gene tree using a HKY 
+ gamma model on a UPGMA topology in PAUP (Swof-
ford 2003). We calculated the likelihood of the gene 
trees given the species tree using the SpedeSTEM2 
(Ence and Carstens 2011). We evaluated two mutually 
exclusive hypotheses: the Scarlet and White ibises rep-
resent different lineages vs. they belong to the same 
lineage. We used a likelihood ratio test (LRT) with one 
degree of freedom to test the significance of the dif-
ference between the species trees. We evaluated this 
method separately using mitochondrial data alone, nu-
clear data alone and the combined data set. The Spede-
STEM2 program assumes a molecular clock, which we 
tested by LRT in PAUP. Additionally, SpedeSTEM2 as-
sumes that the value θ = 4 Neµ is constant across lin-
eages. Thus, we estimated θ using Migrate-n (Beerli and 
Felsenstein 2001).

resuLts

Haplotypes were obtained for Scarlet and 
White ibises (Table 2). Data on three mito-
chondrial markers revealed no shared hap-
lotypes between these groups. Table 3 dis-
plays K2P distances based on mitochondrial 
data. Three nuclear markers (FIB, GADPH, 
and MB) revealed shared haplotypes and 
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evidence of recombination. In contrast, the 
nuclear marker MPP exhibited no shared 
haplotypes or evidence of recombination.

Bayesian species delimitation analysis 
based on the mitochondrial and nuclear 
data resulted in a speciation probability of 
1.0. For the mitochondrial markers, the gsiT 
statistic showed a significant value of 1.0 for 
trees obtained for both ibises. The gsiT values 
for MPP data were 0.937 for the White Ibis 
and 0.994 for the Scarlet Ibis, both of which 
were significant.

The LRT test did not reject the molecular 
clock hypothesis for any marker. The aver-
age estimate of θ was 0.002. Lineage delimi-
tation using the Knowles-Carstens method 

(Knowles and Carstens 2007) based on mi-
tochondrial genes revealed a significantly 
higher lnL value for the hypothesis that the 
Scarlet and White ibises are two different 
lineages. Nuclear genes and combined data 
also revealed highest values for the hypoth-
esis of two different lineages (Table 4), but 
they were not significant.

disCussion

This study applies a multilocus genetic 
approach to evaluate species delimitation 
of Scarlet and White ibises. The absence of 
genetic differentiation among populations 

Table 2. Haplotypes of three mitochondrial (16S, CytB, and COI) and four nuclear (FIB7, MPP, GADPH, and MB) 
markers of Scarlet Ibis and White Ibis. Code: sample identification number. ‘-’ indicates that amplification was not 
obtained. All sequences were deposited in GenBank.

Code Species 16S CytB COI FIB7 MPP GADPH MB

M129 Eudocimus ruber Hap 1 Hap 1 Hap 1 Hap 1/1 Hap 1/1 Hap 1/2 Hap 1/1
M143 Eudocimus ruber Hap 2 Hap 1 Hap 1 Hap 1/1 Hap 1/1 Hap 1/3 Hap 1/1
M159 Eudocimus ruber Hap 3 Hap 2 Hap 1 Hap 1/2 Hap 1/1 Hap 3/9 Hap 1/1
M193 Eudocimus ruber Hap 1 Hap 1 Hap 1 Hap 3/3 Hap 1/1 Hap 4/5 Hap 1/1
M226 Eudocimus ruber Hap 1 Hap 1 Hap 1 Hap 4/4 Hap 1/1 Hap 6/7 Hap 1/2
M241 Eudocimus ruber Hap 1 Hap 1 Hap 1 Hap 1/1 Hap 1/1 Hap 2/8 Hap 1/3
M272 Eudocimus ruber Hap 1 Hap 3 Hap 1 Hap 1/1 Hap 1/1 Hap 7/10 Hap 1/1
M337 Eudocimus ruber Hap 1 Hap 4 Hap 1 Hap 1/1 Hap 1/1 Hap 2/9 Hap 4/4
M376 Eudocimus ruber Hap 1 Hap 1 Hap 1 Hap 1/1 Hap 1/1 Hap 1/9 —
M425 Eudocimus ruber Hap 4 Hap 1 Hap 1 Hap 1/1 — — Hap 5/5
EA172 Eudocimus albus Hap 5 Hap 5 Hap 2 Hap 4/5 Hap 2/2 Hap 11/12 Hap 1/5
EA175 Eudocimus albus Hap 5 Hap 6 Hap 2 Hap 1/4 Hap 2/2 Hap 13/13 Hap 1/2
EA177 Eudocimus albus Hap 5 Hap 6 — Hap 4/4 Hap 2/2 Hap 14/15 Hap 6/6
EA180 Eudocimus albus Hap 5 Hap 5 Hap 2 Hap 4/6 Hap 2/2 Hap 16/17 —
EA189 Eudocimus albus Hap 5 Hap 5 Hap 2 Hap 4/4 Hap 3/3 Hap 18/19 Hap 3/5
EA200 Eudocimus albus Hap 5 Hap 5 Hap 2 Hap 7/7 Hap 3/3 Hap 20/21 Hap 1/6
EA206 Eudocimus albus Hap 6 Hap 6 Hap 2 Hap 8/8 Hap 2/2 Hap 5/22 Hap 2/6
EA210 Eudocimus albus Hap 5 Hap 7 Hap 2 Hap 4/6 Hap 2/2 — Hap 1/6
EA225 Eudocimus albus Hap 5 Hap 8 Hap 2 Hap 3/4 Hap 2/3 Hap 17/17 Hap 1/6
EA227 Eudocimus albus Hap 5 Hap 8 Hap 2 Hap 1/4 Hap 2/3 Hap 23/23 Hap 1/7

Table 3. Comparison of K2P genetic distances between pairs of species based on three mitochondrial (16S, CytB, 
and COI) and one nuclear (MPP) markers. In parentheses are the numbers of species.

Species 16S rRNA CytB COI MPP

Among Eudocimus species (n = 2) 0.5-0.9% 0.8-1.1% 0.6% 0.4-0.8%
Among Plegadis species (n = 3) 0.4-0.7%1 0.9%2

Among Theristicus species (n = 3) 2.2-8.4%1

Among Platalea species (n = 4) 3.1-6.9%1 1.5-8.9%3

Among parapatric birds (n = 24) 1.3 ± 1.2%2 3.1 ± 2.5%2 3.6 ± 3.3%2

1Ramirez et al. (2013).
2Aliabadian et al. (2009).
3Chesser et al. (2010).
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supports our interpretation of results. Gon-
çalves et al. (2010) found no genetic struc-
ture among three populations of the Scarlet 
Ibis. Moreover, there is no evidence of genet-
ic structure among White Ibis populations 
from North America (Stangel et al. 1991). 
The White Ibis has a very low level of natal 
and breeding philopatry as well as a nomad-
ic movement pattern (Frederick et al. 1996; 
Heath et al. 2009), biological characteristics 
that can contribute to panmixia.

Our genetic data based on mitochon-
drial genes indicate that the Scarlet and 
White ibises are two separate groups, since 
these birds share no mtDNA haplotypes. 
The genetic distances were comparable to 
those found among other species of the fam-
ily Threskiornithidae (Chesser et al. 2010; 
Ramirez et al. 2013) (Table 3). It is impor-
tant to remember that this family has many 
species complexes. For example, the three 
species of the genus Plegadis have similar ge-
netic distance values, but these species have 
been considered as a superspecies (Sibley 
and Monroe 1990). On the other hand, spe-
cies of the genus Platalea have higher genetic 
distance values (Table 3); however, the ge-
nus has very differentiated species, even with 
some species placed in monospecific genera. 
Genetic distance values between the Scarlet 
and White ibises were lower (but within the 
range of values) than those found between 
24 pairs of parapatric species (Table 3; Ali-
abadian et al. 2009). Threskiornithidae has 
lower mutation rates of mtDNA in compar-
ison to other groups of birds (Eo and De-

Woody 2010), which may explain why we 
found lower distances than Aliabadian et al. 
(2009). Another explanation would be the 
recent separation into two lineages, estimat-
ed to be two million years ago (Ramirez et 
al. 2013).

One nuclear marker (MPP) showed dif-
ferentiation between the Scarlet and White 
ibises, while other nuclear markers revealed 
polyphyletic patterns, likely due to incom-
plete lineage sorting and/or the retention 
of ancestral polymorphism. However, we re-
covered a strong signal of speciation using 
nuclear markers based on different coales-
cent analyses of species delimitation. The co-
alescent results support the hypothesis of two 
evolutionary lineages. Moreover, the Bayes-
ian delimitation revealed the highest value 
for this speciation event, even with nuclear 
marker data, and the gsiT statistic supported 
a significant degree of differentiation, with 
significant values for both the mitochon-
drial genes and MPP gene. Species delimi-
tation analysis, as proposed by Knowles and 
Carstens (2007), based on mitochondrial 
data supports the hypothesis of two differ-
ent lineages. However, nuclear data did not 
reject any hypotheses. This result would be 
expected if one supposes a recent separation 
of these lineages.

The results suggest that Scarlet Ibises 
from the southern end of their range, and 
White Ibises from North America show 
strong differentiation that can be inter-
preted initially as being separate species. 
However, as the total area of geographic 
distribution of the Scarlet and White ibises 
was not sampled, the correct position of the 
White Ibis from South America, and the 
overall question of speciation within the 
contact zone, merits further investigation. 
We hope to obtain samples from the South 
American white form, which has been pro-
posed as either a subspecies of White Ibises 
(Patten 2012) or of Scarlet Ibises (Hancock 
et al. 1992). The first step was done in this 
preliminary study that standardized the 
methodological genetic approach, selected 
candidate genes and started to clarify this 
taxonomic question.

Table 4. Likelihood values for species delimitation ac-
cording to Knowles and Carstens (2007) obtained in 
SpedeSTEM2. M: mitochondrial data set; N: nuclear 
data set; N+M: combined data set; lnL: logarithm of 
likelihood; k: number of species on species tree (includ-
ing outgroup: Buff-necked Ibis); LRT: likelihood ratio 
test.

Data set -lnL k LRT P-value

M 1,177.460 3 293.520 0
1,324.220 2

N 3,262.836 3 0.058 0.820
3,262.865 2

N+M 723.485 3 0.051 0.820
723.510 2
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